Please use this identifier to cite or link to this item:
Full metadata record
DC FieldValueLanguage
dc.contributor.authorZwan, Benjamin-
dc.contributor.otherFuangrod, T.-
dc.contributor.otherGreer, P.B.-
dc.contributor.otherBarnes, M.P.-
dc.contributor.otherLehman, J.-
dc.description.abstractVolumetric-modulated arc therapy (VMAT) treatment delivery requires three key dynamic components; gantry rotation, dose rate modulation, and multi-leaf collimator motion, which are all simultaneously varied during the delivery. Misalignment of the gantry angle can potentially affect clinical outcome due to the steep dose gradients and complex MLC shapes involved. It is essential to develop independent gantry angle quality assurance (QA) appropriate to VMAT that can be performed simultaneously with other key VMAT QA testing. In this work, a simple and inexpensive fully independent gantry angle measurement methodology was developed that allows quantitation of the gantry angle accuracy as a function of time. This method is based on the analysis of video footage of a "Double dot" pattern attached to the front cover of the linear accelerator that consists of red and green circles printed on A4 paper sheet. A standard mobile phone is placed on the couch to record the video footage during gantry rotation. The video file is subsequently analyzed and used to determine the gantry angle from each video frame using the relative position of the two dots. There were two types of validation tests performed including the static mode with manual gantry angle rotation and dynamic mode with three complex test plans. The accuracy was 0.26 degrees +/- 0.04 degrees and 0.46 degrees +/- 0.31 degrees (mean +/- 1 SD) for the static and dynamic modes, respectively. This method is user friendly, cost effective, easy to setup, has high temporal resolution, and can be combined with existing time-resolved method for QA of MLC and dose rate to form a comprehensive set of procedures for time-resolved QA of VMAT delivery system.en
dc.description.sponsorshipCentral Coast Cancer Centreen
dc.titleA novel and independent method for time-resolved gantry angle quality assurance for VMATen
dc.typeJournal Articleen
dc.description.affiliatesCentral Coast Local Health Districten
dc.description.affiliatesGosford Hospitalen
dc.description.affiliatesThe University of Newcastleen
dc.identifier.journaltitleJournal of Applied Clinical Medical Physicsen
item.fulltextNo Fulltext-
item.openairetypeJournal Article-
item.openairecristype Physics-
Appears in Collections:Oncology / Cancer
Show simple item record

Page view(s)

checked on Mar 24, 2023

Google ScholarTM



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.