Please use this identifier to cite or link to this item: https://hdl.handle.net/1/1824
Full metadata record
DC FieldValueLanguage
dc.contributor.authorZwan, Benjamin-
dc.contributor.otherPuyati, W.-
dc.contributor.otherKhawne, A.-
dc.contributor.otherBarnes, M.P.-
dc.contributor.otherGreer, P.B.-
dc.contributor.otherFuangrod, T.-
dc.date.accessioned2020-07-27T23:01:38Z-
dc.date.available2020-07-27T23:01:38Z-
dc.date.issued2020-06-
dc.identifier.citation21(8):73-82en
dc.identifier.issn1526-9914en
dc.identifier.urihttps://elibrary.cclhd.health.nsw.gov.au/cclhdjspui/handle/1/1824-
dc.description.abstractPURPOSE: A predictive linac quality assurance system based on the output of the Machine Performance Check (MPC) application was developed using statistical process control and autoregressive integrated moving average forecast modeling. The aim of this study is to demonstrate the feasibility of predictive quality assurance based on MPC tests that allow proactive preventative maintenance procedures to be carried out to better ensure optimal linac performance and minimize downtime. METHOD AND MATERIALS: Daily MPC data were acquired for a total of 490 measurements. The initial 85% of data were used in prediction model learning with the autoregressive integrated moving average technique and in calculating upper and lower control limits for statistical process control analysis. The remaining 15% of data were used in testing the accuracy of the predictions of the proposed system. Two types of prediction were studied, namely, one-step-ahead values for predicting the next day's quality assurance results and six-step-ahead values for predicting up to a week ahead. Results that fall within the upper and lower control limits indicate a normal stage of machine performance, while the tolerance, determined from AAPM TG-142, is the clinically required performance. The gap between the control limits and the clinical tolerances (as the warning stage) provides a window of opportunity for rectifying linac performance issues before they become clinically significant. The accuracy of the predictive model was tested using the root-mean-square error, absolute error, and average accuracy rate for all MPC test parameters. RESULTS: The accuracy of the predictive model is considered high (average root-mean-square error and absolute error for all parameters of less than 0.05). The average accuracy rate for indicating the normal/warning stages was higher than 85.00%. CONCLUSION: Predictive quality assurance with the MPC will allow preventative maintenance, which could lead to improved linac performance and a reduction in unscheduled linac downtime.en
dc.description.sponsorshipMedical Physicsen
dc.subjectCanceren
dc.titlePredictive quality assurance of a linear accelerator based on the machine performance check application using statistical process control and ARIMA forecast modelingen
dc.typeJournal Articleen
dc.identifier.doi10.1002/acm2.12917en
dc.description.pubmedurihttps://pubmed.ncbi.nlm.nih.gov/32543097/en
dc.description.affiliatesCentral Coast Local Health Districten
dc.description.affiliatesGosford Hospitalen
dc.description.affiliatesThe University of Newcastleen
dc.identifier.journaltitleJournal of Applied Clinical Medical Physicsen
dc.originaltypeTexten
item.grantfulltextnone-
item.fulltextNo Fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.openairetypeJournal Article-
item.cerifentitytypePublications-
crisitem.author.deptMedical Physics-
Appears in Collections:Oncology / Cancer
Show simple item record

Page view(s)

100
checked on Nov 29, 2024

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.