Please use this identifier to cite or link to this item: https://hdl.handle.net/1/2379
Title: Analysis of Line and Tube Detection Performance of a Chest X-ray Deep Learning Model to Evaluate Hidden Stratification
Authors: Tang, Cyril H M ;Seah, Jarrel C Y;Ahmad, Hassan K;Milne, Michael R;Wardman, Jeffrey B;Buchlak, Quinlan D;Esmaili, Nazanin;Lambert, John F;Jones, Catherine M
Affliation: Central Coast Local Health District
Gosford Hospital
Issue Date: 9-Jul-2023
Source: 13(14):2317
Journal title: Diagnostics (Basel)
Department: Intensive Care
Abstract: This retrospective case-control study evaluated the diagnostic performance of a commercially available chest radiography deep convolutional neural network (DCNN) in identifying the presence and position of central venous catheters, enteric tubes, and endotracheal tubes, in addition to a subgroup analysis of different types of lines/tubes. A held-out test dataset of 2568 studies was sourced from community radiology clinics and hospitals in Australia and the USA, and was then ground-truth labelled for the presence, position, and type of line or tube from the consensus of a thoracic specialist radiologist and an intensive care clinician. DCNN model performance for identifying and assessing the positioning of central venous catheters, enteric tubes, and endotracheal tubes over the entire dataset, as well as within each subgroup, was evaluated. The area under the receiver operating characteristic curve (AUC) was assessed. The DCNN algorithm displayed high performance in detecting the presence of lines and tubes in the test dataset with AUCs > 0.99, and good position classification performance over a subpopulation of ground truth positive cases with AUCs of 0.86-0.91. The subgroup analysis showed that model performance was robust across the various subtypes of lines or tubes, although position classification performance of peripherally inserted central catheters was relatively lower. Our findings indicated that the DCNN algorithm performed well in the detection and position classification of lines and tubes, supporting its use as an assistant for clinicians. Further work is required to evaluate performance in rarer scenarios, as well as in less common subgroups.
URI: https://hdl.handle.net/1/2379
DOI: 10.3390/diagnostics13142317
Pubmed: https://pubmed.ncbi.nlm.nih.gov/37510062
ISSN: 2075-4418
Publicaton type: Journal Article
Keywords: Radiology
Diagnostic Imaging
Appears in Collections:Radiology

Show full item record

Page view(s)

88
checked on Nov 29, 2024

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.